Synthesis of Halogenated Esters of Fluorinated Carboxylic Acids by the **Regio- and Stereospecific Addition of Acyl Hypochlorites to Olefins**

Isao Tari¹ and Darryl D. DesMarteau*

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Received July 17, 1979

Addition reactions of the fluorinated acyl hypochlorites CF₃CO₂Cl, C₂F₅CO₂Cl, n-C₃F₇CO₂Cl, ClCF₂CO₂Cl, and HCF₂CO₂Cl with CF₂=CF₂ and CF₂=CH₂ form the respective esters in varying yields. The reactions are regiospecific with CF2=CH2. Additional reactions of CF3CO2Cl with CF2=CFCl, CF2=CCl2, CH2=CH2, and cis- and trans-CFH=CFH further illustrate the potential of the acyl hypochlorites for the synthesis of a variety of esters. In addition, the latter reactions provide further examples of the regiospecificity of these additions and two examples of their stereospecificity. A concerted cis addition is proposed. The new esters exhibit excellent thermal stability, but are unstable in the presence of KF.

Introduction

The synthesis of highly fluorinated esters of carboxylic acids is in general quite difficult. This is mainly due to the fact that while fluorinated carboxylic acids are readily available, highly fluorinated alcohols are not. The simplest perfluorinated ester, perfluoromethyl acetate, is known, but its synthesis by a photochemical reaction is difficult.²

$$[CF_3OC(O)]_2 + (CF_3)_2CO \xrightarrow{n\nu} CF_3C(O)OCF_3$$

No alternative synthesis has been found, and on the basis of properties of CF₃OH,³ synthesis from CF₃CO₂H and CF_3OH is unlikely.

Shreeve and co-workers developed methods for synthesis of several fluorinated esters via fluoride ion catalyzed reactions of fluoro ketones and fluorinated alcohols (no α -fluorines) with acid fluorides.^{4,5} A few other syntheses

$$R_{f}C(O)F + (CF_{3})_{2}CO \xrightarrow[low temp]{CaF} R_{f}C(O)OCF(CF_{3})_{2}$$
$$R_{f} = F, CF_{3}, C_{2}F_{5}, C_{3}F_{7}$$
$$CF_{3}C(O)F + ROH \xrightarrow[CaF]{CaF} CF_{3}C(O)OR + HF$$

 $CF_{3}CH_{2}$, $(CF_{3})_{3}C$, $(CF_{3})_{2}CH_{3}C$, $(CF_{3})_{2}HC$, $C_{2}F_{5}(CF_{3})_{2}C$

with $KOC(CF_3)_3$ and acid fluorides,⁶ $KOC(C_2F_3)_3$ and acid chlorides,⁷ and fluorinated alcohols (no α -fluorines) and acid chlorides provided several other examples.⁸ An interesting aspect of the above work concerns the stability of these esters in the presence of fluoride. Those which contained α -fluorines in the carboalkoxy group were unstable.

The recent discovery of chlorine(I) derivatives of several fluorinated carboxylic acids provides a potential new route for the synthesis of highly fluorinated esters.^{9,10} These electropositive halogen compounds can be expected to undergo addition reactions with a variety of alkenes, forming the respective esters. In this paper, reactions of $HCF_2CO_2Cl, C_2F_5CO_2Cl, n-C_3F_7CO_2Cl, ClCF_2CO_2Cl, and$ CF_3CO_2Cl with several olefins are discussed. In most cases, good yields of the expected esters were obtained. During the course of this work, an independent investigation reported two related esters by a similar route.¹⁰

Experimental Section

General Procedures. All work was carried out in Pyrex and stainless-steel vacuum systems equipped with glass-Teflon or stainless-steel valves. Pressures were measured with a Wallace and Tiernan differential pressure gauge, Series 1500. Temperatures were measured with a digital copper-constantan thermocouple. Quantities of reactants and products were measured either by direct weighing or by PVT measurements assuming ideal gas behavior.

Routine IR spectra were taken on a Perkin-Elmer 337 spectrometer at 5 to 100 torr. A 10-cm Pyrex glass cell fitted with AgCl was employed. IR spectra for assignment were taken on a Perkin-Elmer 180 at ~ 5 torr. Unless otherwise noted, NMR spectra were recorded on a Varian XL-100-15 spectrometer by using 20 to 15 mol % solutions in CFCl₃. Spectra were at 94.1 MHz for ¹⁹F and 100.1 MHz for ¹H with CFCl₃ and Me₄Si as internal and external references, respectively. ¹⁹F chemical shifts are reported as ϕ^* values (δ relative to internal CFCl₃ not at infinite dilution).

Molecular weights were determined by vapor density measurements by using a calibrated Pyrex bulb fitted with a glass-Teflon valve. Determinations were made on successive fractions of each sample.

Melting points were taken in a Pyrex tube fitted with a glass-Teflon valve. The compound was pumped under vacuum onto the wall of the tube cooled by liquid N2 to form a crystalline ring. The tube was placed in an ethanol bath, which was cooled to -112 °C prior to the measurement and then warmed slowly with proper agitation.

Vapor pressures and boiling points of the products were measured by a static method. Equations describing pressure as a function of temperature were obtained by a least-squares fit of the data to both linear and quadratic equations and the best fit is reported.

For further purifications, the reaction products were separated via GLC on a Victoreen Series 4000 gas chromatograph equipped for gas injection, TCD, and low-temperature collection. A 2 ft \times 3/8 in. column which was packed with 40% Halocarbon 11–21 polymer oil on acid-washed Chromosorb P was used in most cases. For less volatile products, a 1-ft column of similar condition was used

Reagents. Fluorine, chlorine, CF₃COOH, CClF₂COOH, CF₂HCOOH, C₂F₅COOH, n-C₃F₇COOH, and NaOH were obtained from commercial sources. Sodium salts of the acids were prepared by reactions between the acids and NaOH and then were dried under vacuum. CIF was prepared by a reaction between equimolar amounts of fluorine and chlorine (90 mmol) in a 150-mL

Department of Synthetic Chemistry, School of Engineering, Oka-yama University, Tusushima, Okayama 700, Japan.
 Varetti, E. L.; Aymonino, P. J. An. Assoc. Quim. Argent. 1967, 10,

^{153.}

[.] (3) Seppelt, K. Angew. Chem., Int. Ed. Engl. 1977, 16, 322. (4) DeMarco, R. A.; Couch, D. A.; Shreeve, J. M. J. Org. Chem. 1972, 37. 3332

⁽⁵⁾ Majid, A.; Shreeve, J. M. J. Org. Chem. 1973, 38, 1973.

⁽⁵⁾ Majid, A.; Shreeve, J. M. J. Org. Chem. 1973, 38, 1973.
(6) Walker, N.; DesMarteau, D. D. J. Fluorine Chem. 1975, 5, 135.
(7) Johnson P. G.; Tittle, B. J. Fluorine Chem. 1973/74, 3, 1.
(8) DePasquale, R. J. J. Org. Chem. 1973, 38, 3025.
(9) DesMarteau, D. D. J. Am. Chem. Soc. 1978 100, 340. Tari, I.;
DesMarteau, D. D. Inorg. Chem. 1979, 11, 3205.
(10) Schack, C. J.; Christe, K. O. J. Fluorine Chem. 1978, 12, 325.

Table I.	Addition	Reactions	of	RCO ₂	, Cl	to	Olefins ^a
----------	----------	-----------	----	------------------	------	----	----------------------

			% yield		
R	olefin	product	method A	method B	
CF ₃	CF ₂ =CF ₂	CF ₃ CO ₂ CF ₂ CF ₂ Cl	54	47	
CF ₃	$CF_{2} = CH_{2}$	CF ₃ CO ₂ CF ₂ CH ₂ Cl	94	56	
$\tilde{\mathbf{CF}}_{3}^{3}$	CF,=CFCl	CF,CO,CFCICF,CI		65	
ĊF ₃	$CF_2 = CCl_2$	CF ³ ₂ CO ² ₂ CCl ₂ CF ² ₂ Cl		81	
ČF ₃	$CH_2 = CH_2$	CF,CO,CH,CH,Cl		33	
$\tilde{\mathbf{CF}}_{3}^{3}$	cis-CFH=CFH	erythro-CF,CO,CFHCFHCl		64	
ĊF,	trans-CFH=CFH	threo-CF,CO,CFHCFHCl		65	
$\tilde{\mathbf{C}}_{2}\tilde{\mathbf{F}}_{5}$	$CF_2 = CF_2$	C ₂ F ₅ CO ₂ ČF ₂ ĊF ₂ Cl	65	53	
	$CF_2 = CH_2$	C ₂ F ₂ CO ₂ CF ₂ CH ₂ Cl	80	50	
$n \cdot C_3 F_7$	$CF_2 = CF_2$	$n - C_3 F_7 CO_2 CF_2 CF_2 CI$	66	49	
$n - C_3 F_7$	CF,=CH,	n-C,F,CO,CF,CH,Cl	64	80	
CICF	$CF_2 = CF_2$	CICF, CO, CF, CF, CI	17	42	
CICF,	$CF_{2} = CH_{2}$	CICF, CO, CF, CH, CI	43	93	
HCF ₂	$CF_2 = CF_2$	$HCF_2CO_2CF_2CF_2Cl(?)$	<1	<1	
HCF ₂	$CF_2 = CH_2$	HCF ₂ CO ₂ CF ₂ CH ₂ Cl	17	95	

^a For details of reactions see Experimental Section. Blank indicates reaction was not tried.

Monel vessel (5000 psi) at 250 °C for 12 h. (Caution: Contained explosions are observed under these conditions as the temperature approaches ~ 100 °C). CIF for reactions was removed from the storage vessel at -111 °C to eliminate contamination by any CIF₃ present. Fluorinated olefins were obtained from PCR and were used as received.

The hypochlorites were prepared by reactions of the sodium salts of the acids with ClF at -111 to -78 °C or by reactions of the acid with ClF in the presence of NaF at -111 to -78 °C. Details for these preparations are given below.9 (Caution: The hypochlorites described in this work are explosive. Considerable care must be used in the preparation and handling of these compounds. Please see ref 9 for details.)

Reactions of RrCO2Cl with Alkenes. Two related methods, differing mainly in the way the hypochlorite was prepared, were used for the reactions of the hypochlorites with the alkenes.

Method A. Dry RCO₂Na (10.0 mmol) was placed in a passivated 75-mL stainless-steel reactor, evacuated, and cooled to -195 °C. ClF (3.0 mmol) was then added from an all stainless steel vacuum line. The reactor was then placed in a CFCl₃ bath containing solid CO₂ at -111 °C. It warmed slowly over ~6 h to -78 °C and was kept at this temperature for ~ 18 h. The pure hypochlorite was then collected in a -111 °C trap ($R = CF_3, C_2F_5$) or -78 °C trap ($R = C_3F_7, HCF_2, ClCF_2$). The hypochlorite was then vacuum transferred at low pressure into a 100-mL glass bulb fitted with a Teflon-glass valve cooled to -195 °C. CF_2 =:CF₂ or CF_2 =:CH₂ (3.0 mmol) was then added and the reactor was placed in a CF_2Cl_2 bath at -150 °C. It warmed slowly over 1 day to ~22 °C and the products were separated by trap-to-trap distillation. The traps were cooled to a temperature (-60 to -111 °C) to condense the addition product, but not the unreacted olefin and decomposition products of the hypochlorites. Final purification was accomplished by GLC, although the product was normally ca. 95% pure before GLC.

Method B. To a ~15-mL Kel-F reactor containing 2.0 g of dry NaF powder was added RCO₂H (3.0 mmol) by weight directly or by vacuum transfer. The reactor was cooled to -195 °C and 3.3 mmol of CIF were added. The reactor was then placed in a CFCl₃ bath at -111 °C and allowed to warm as in method A. After 1 day, the reactor was cooled to -111 °C and pumped on to remove CIF and decomposition products. Olefin (3.0 mmol) was then added by vacuum transfer to the reactor at -195 °C and the reaction was allowed to proceed as in method A. Products were separated as in method A.

The reactions carried out by methods A and B are summarized in Table I. Data for new compounds follow.

CF₃^A**CO**₂**CF**₂^B**CF**₂^C**C**1: bp 42.6 °C; mp −98.4 °C; mol wt 248.9, calcd 248.5; ¹⁹F NMR ϕ^*_A 76.0 (s); ϕ^*_B 90.6 (t), ϕ^*_C 74.3 (t), $J_{AB} \le 0.5$, $J_{BC} = 1.9$ Hz; IR 1847 (vs), 1331 (s), 1244 (vs), 1213 (vs), 1197 (w), 1183 (w), 1166 (w), 1125 (vs), 1088 (vs), 975 (vs), 850 (w), 798 (w), 757 (w), 730 (w), 705 (m), 645 (m), 630 (w), 615 (w), (552 (w), 458 (w) cm⁻¹; $\Delta H_{vap} = 7.42$ kcal/mol; $\Delta S_{vap} = 23.5$ eu; log P (torr) = 8.0182 - 1622.4/T. CF₃^ACO₂CF₂^BCH₂^CCl: bp 73.1 °C; mp -119 °C; mol wt 209.8,

calcd 212.5; NMR ϕ_{A}^{*} 76.1 (s), ϕ_{B}^{*} 76.1 (t), δ_{C} 4.31 (t), $J_{AB} \leq 0.5$,

 $J_{\rm BC} = 9.3$ Hz; IR 2990 (w), 1827 (vs), 1432 (m), 1351 (w), 1319 (m), 1283 (s), 1242 (vs), 1220 (w), 1198 (vs), 1143 (m), 1127 (vs), 1100 (m), 1073 (vs), 1025 (m), 902 (m), 879 (w), 835 (m), 787 (w), 764 (w), 740 (m), 655 (w), 620 (m), 544 (m), 460 (w) cm⁻¹; ΔH_{vap} = 7.84 kcal/mol; $\Delta S_{vap} = 22.7$ eu; log P(torr) = 6.26125(626.602/T) - (188349/T²).

CF₃^ACO₂CF^BClCF^CF^DCl: bp 71.5 °C; mp -115.0 °C; mol wt 264.2, calcd 265.0; ¹⁹F NMR ϕ^*_A 76.0 (s), ϕ^*_B 82.3 (t(d-d)), ϕ^*_C 71.04 (d), ϕ^*_D 71.09 (d), $J_{AB} \sim 0.5$, $J_{BC} = 5.4$, $J_{BD} = 6.3$, $J_{CD} =$? Hz; IR 1842 (vs), 1330 (m), 1246 (vs), 1197 (vs), 1146 (m), 1100 (vs), 1094 (s), 1032 (s), 943 (m), 846 (s), 804 (m), 764 (w), 700 (w), 687 (w), 666 (m), 617 (m), 578 (m), 462 (w) cm⁻¹; $\Delta H_{vap} = 7.56$ kcal/mol; $\Delta S_{vap} = 21.9$ eu; log P(torr) = 5.98490 - (487.210/T) $(200882/T^2)$

CF₃^ACO₂CCl₂CF₂^BCl: bp 96.3 °C; mp -116 °C; mol wt 285.0, calcd 285.5; ¹⁹F $NMR \phi_A^* 75.9$ (s), $\phi_B^* 68.1$ (s); IR 1836 (vs), 1382 (s), 1244 (vs), 1197 (vs), 1102 (vs), 1063 (s), 1019 (s), 995 (s), 935 (m), 913 (s), 890 (w), 864 (s), 792 (s), 760 (w), 731 (m), 659 (m), $\begin{array}{l} 605 \ (\mathrm{m}), \, 549 \ (\mathrm{m}), \, 460 \ (\mathrm{w}) \ \mathrm{cm}^{-1}; \ \Delta H_{\mathrm{vap}} = 7.83 \ \mathrm{kcal/mol}; \ \Delta S_{\mathrm{vap}} = 21.2 \ \mathrm{eu}; \ \log P(\mathrm{torr}) = 8.98200 - (2796.79/T) + (200489/T^2). \end{array}$

CF₃^ACO₂CH₂^BCH₂^CCl: bp 121.4 °C; mp -116.0 °C; mol wt 175.3, calcd 176.5; NMR ϕ_A^* 75.7 (s), δ_B 3.97 (t), δ_C 4.83 (t), J_{BC} = 5.6 Hz; IR 2976 (w), 1800 (vs), 1459 (w), 1437 (w), 1395 (m), 1348 (s), 1304 (w), 1235 (vs), 1186 (vs), 1147 (vs), 970 (w), 772 (m), 731 (m), 680 (m), 665 (w), 655 (w), 618 (w), 595 (w), 524 (w), 463 (w) cm⁻¹; $\Delta H_{vap} = 7.65$ kcal/mol; $\Delta S_{vap} = 19.4$ eu; log P(torr) = 7.1200 - (1672.4/T).

erythro-CF₃^ACO₂CF^BH^CCF^DH^ECl: bp 77.3 °C; mp -109 °C; mol wt 215.3, calcd 212.5; NMR ϕ_A^* 75.9 (s), ϕ_B^* 141.4 (d-d-d), ϕ_D^* 153.9 (d-d-d), δ_C 6.69 (basic d-d-d), δ_E 7.00 (basic d-d-d), $J_{AB} < 0.5, J_{BC} = 53.0, J_{BD} = 15.4, J_{BE} = 4.8, J_{CD} = 3.9, J_{CE} = 5.3, J_{DE} = 46.4 Hz$ (ABMNX₃ spin system, J_{BE} and J_{CD} are the average of two slightly different values); IR 3005 (w), 1825 (s), 1362 (w), 1336 (s), 1306 (w), 1242 (vs), 1194 (vs), 1144 (vs), 1117 (vs), 1094 (m), 1076 (m), 1041 (s), 1026 (w), 995 (w), 928 (w), 862 (s), 825 (s), 709 (m), 737 (s), 650 (m), 631 (m), 654 (w), 620 (w), 476 (vw), (s), 105 (iii), 101 (s), 600 (iii), 600 (iii), 600 (iii), 600 (iii), 200 (ii

IR not distinguishable from erythro isomer; NMR ϕ_{A}^{*} 75.8 (s), ϕ_{B}^{*} 142.4 (d-d-d), ϕ_{D}^{*} 155.1 (d-d-d), δ_{C} 6.66 (basic d-d-d), δ_{E} 6.39 (basic d-d-d), $J_{AB} \sim 0.4$, $J_{BC} = 51.6$, $J_{BD} = 20.4$, $J_{BE} = 3.9$, $J_{CD} = 5.0$, $J_{CE} = 4.8$, $J_{DE} = 49.2$ Hz (ABMNX₃ spin system, J_{CD}

and J_{BE} are the average of two slightly different values). $CF_3^{A}CF_2^{B}CO_2CF_2^{C}CF_2^{D}Cl:$ bp 63.3; mp -124.3 °C; mol wt 299.7, calcd 298.5; ¹⁹F NMR ϕ_A^* 83.4 (t), ϕ_B^* 122.1 (q), ϕ_C^* 90.6 (t), ϕ_D^* 74.3 (t), J_{AB} = 1.6, J_{CD} = 2.1 Hz; IR 1834 (s), 1330 (m), 1005 (c), 1005 1272 (s), 1233 (vs), 1200 (s), 1180 (s), 1155 (s), 1120 (vs), 1005 (s), 965 (s), 845 (w), 768 (w), 748 (w), 705 (m), 633 (m), 588 (w), 535 (w) cm⁻¹; $\Delta H_{vap} = 7.58$ kcal/mol; $\Delta S_{vap} = 22.5$ eu; log P(torr) 7.5248 - (1469.5/T) - (31356/ T^2). CF₃^ACF₂^BCO₂CF₂^CCH₂^DCl: bp 88.3 °C; mp -105.5 °C; mol

wt 261.5, calcd 262.5; NMR ϕ_{A}^{*} 83.4 (t), ϕ_{B}^{*} 122.3 (q), ϕ_{C}^{*} 75.9 (t), δ_{D} 4.30 (t), J_{AB} = 1.6, J_{CD} = 9.5 Hz; IR 2980 (w), 1815 (vs), 1430 (m), 1325 (m), 1274 (s), 1230 (vs), 1144 (s), 1128 (s), 1069

(vs), 1024 (vs), 902 (m), 850 (m), 786 (w), 734 (m), 672 (m), 622

(vs), 1024 (vs), 502 (m), 300 (m), 760 (w), 754 (m), 672 (m), 622 (m), 533 (w) cm⁻¹; $\Delta H_{vap} = 8.42$ kcal/mol; $\Delta S_{vap} = 23.3$ eu; log $P(torr) = 6.43311 - (728.647/T) - (200831/T^2)$. CF₃^ACF₂^BCF₂^CCO₂CF₂^DCF₂^ECl: bp 85.7 °C; mp -113.0 °C; mol wt 350.2, calcd 348.5; ¹⁹F NMR ϕ^*_{A} 81.4 (t), ϕ^*_{B} 127.1 (s), ϕ^*_{C} 119.5 (q), ϕ^*_{D} 90.4 (t), ϕ^*_{E} 74.3 (t), $J_{AC} = 8.5$, $J_{DE} = 2.0$ Hz; IR 1837 (vs), 1500 (w), 1340 (w), 1440 (w), 1350 (m), 1325 (m), 1285 (m), 1426 (w), 1426 (w) 1285 (w), 1244 (vs), 1220 (s), 1178 (m), 1155 (s), 1132 (vs), 1060 (s), 1022 (vs), 977 (vs), 915 (s), 844 (w), 752 (m), 704 (m), 631 (w), 587 (w), 527 (w) cm⁻¹; $\Delta H_{vap} = 8.51 \text{ kcal/mol}; \Delta S_{vap} = 23.7 \text{ eu};$ log $P(\text{torr}) = 7.3186 - (1325.5/T) - (95799/T^2).$ $CF_3^{A}CF_2^{B}CF_2^{C}CO_2CF_2^{D}CH_2^{E}Cl: \text{ bp } 109.7 \text{ °C; mp } -99.6 \text{ °C;}$

mol wt 311.5, calcd 312.5; NMR ϕ_A^* 81.3 (t), ϕ_B^* 127.0 (s), ϕ_C^* 119.7 (q), $\phi_{\rm D}^*$ 76.0 (t), $\delta_{\rm E}$ 4.30 (t), $J_{\rm AC}$ = 8.8, $J_{\rm DE}$ = 9.5 Hz; IR 2975 (w), 1813 (s), 1430 (m), 1350 (w), 1323 (m), 1243 (vs), 1220 (s), 1133 (vs), 1070 (vs), 1024 (s), 970 (m), 940 (m), 900 (m), 835 (m), 790 (w), 750 (m), 723 (m), 622 (w), 535 (w) cm⁻¹; $\Delta H_{vap} = 9.51$ kcal/mol; $\Delta S_{vap} = 24.8$ eu; log P (torr) = 7.6599 - (1580.8/T) - $(95345/T^2).$

 $ClCF_2^ACO_2CF_2^BCF_2^CCl:$ bp 74.2 °C; mp -84.2 °C; mol wt 263.9, calcd 265.0; ¹⁹F NMR ϕ_A^* 65.6 (s), ϕ_B^* 90.9 (t), ϕ_C^* 74.2 (t), $J_{BC} = 2.0$ Hz; IR 1835 (vs), 1450 (w), 1325 (m), 1268 (m), 1205 (m), 1184 (vs), 1160 (s), 1120 (vs), 1096 (vs), 1022 (vs), 980 (vs), 954 (s), 844 (w), 763 (w), 700 (m), 610 (m), 475 (w) cm⁻¹; ΔH_{vap} = 7.79 kcal/mol; ΔS_{vap} = 22.4 eu; log P(torr) = 6.48996 (804.431/T) - (156042/T²).

 $ClCF_2^ACO_2CF_2^BCH_2^CCl:$ bp 105.8 °C; mp -95.5 °C; mol wt 227.9, calcd 229.0; NMR ϕ_A^* 65.5 (s), ϕ_B^* 76.2 (t), δ_C 4.33 (t); J_{BC} = 9.6 Hz; IR 3000 (vw), 1835 (s), 1324 (w), 1265 (m), 1205 (m), 1188 (vs), 1160 (s), 1124 (vs), 1093 (vs), 980 (s), 955 (m), 838 (w), 763 (w), 705 (w), 610 (w) cm⁻¹; $\Delta H_{vap} = 8.40$ kcal/mol; $\Delta S_{vap} = 22.2$ eu; log $P(torr) = 8.57653 - (2481.04/T) - (122290/T^2)$.

H^ACF₂^BCO₂CF₂^CCH₂^DCl: mp -67.0 °C; mol wt 188.2, calcd 194.5; NMR ϕ_{B}^{*} 128.2 (d), ϕ_{C}^{*} 76.0 (t), δ_{A} 6.17 (t), δ_{D} 4.36 (t), J_{AB} = 52.6, J_{CD} = 9.5 Hz; IR 2975 (w), 1817 (vs), 1433 (m), 1345 (w), 1320 (m), 1267 (s), 1222 (s), 1197 (m), 1127 (vs), 1105 (s), 1075 (vs), 942 (w), 900 (m), 820 (m), 617 (w), 515 (w) cm⁻¹.

Results and Discussion

The addition reactions of RCO₂Cl to olefins are summarized in Table I. Due to the thermal instability of the hypochlorites, the reported yields are only approximate. Substantial variation in the amount of hypochlorite actually used in the reactions may have occurred, and this fact especially precludes any real comparison between methods A and B. These reactions proceed in good yield in cases where the addition occurs readily at low temperatures. Comparing $CF_2 = CF_2$ to $CF_2 = CH_2$ indicates a higher yield for the latter in nearly every case. This may be due to the greater resistance of $CF_2 = CF_2$ to electrophilic attack (see following discussion on mechanisms) which requires higher temperatures for the reactions to proceed. The relative thermal stability of the hypochlorites is $R = CF_3 > C_2F_2 > n \cdot C_3F_7 > ClCF_2 > HCF_2$, and this ordering may also qualitatively represent the relative electrophilic character of the chlorine atom.⁹ Thus only traces of $HCF_2CO_2CF_2CF_2CI$ were observed on reaction of HCF_2CO_2CI with $CF_2=CF_2$. This hypochlorite, being the least stable and least electrophilic, decomposed before addition to the olefin occurred.

The halogenated esters formed in the above reactions significantly extend the known examples of such compounds. The new esters are all stable, colorless liquids at 22 °C and exhibit excellent thermal stability at higher temperatures. Several of the compounds were compared under identical conditions at 200 °C in glass. These results are given in Table II.

The identification of the new esters is adequately determined by their molecular weight and IR and NMR spectra. Their IR spectra exhibit a ν (C==O) stretch in the 1800-1850 cm⁻¹ region, which is in the region expected for compounds of this type. The remainder of the spectra are

Table II. Comparison of Thermal Stability of Halogenated Esters^a

ester	% recovery (200 °C, 10 h) ^b
CF,CO,CF,CF,Cl	100
CF ₃ CO ₂ CF ₂ CH ₂ Cl	100
CF ₃ CO ₂ CCl ₂ CF ₂ Cl	100
C ₂ F ₅ CO ₂ CF ₂ CF ₂ Cl	100
C ₂ F ₂ CO ₂ CF ₂ CH ₂ Cl	100
$n C_3 F_7 CO_2 CF_2 CF_2 CI$	100
$n - C_3 F_7 CO_2 CF_2 CH_2 Cl$	100
CICF, CO, CF, CF, CI	~90 ^c
CICF, CO, CF, CH, CI	~90°
HCF,CO,CF,CH,Cl	~90°

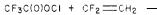
^a New compounds not listed here but given in Table I were not investigated. b Checked by comparison of IR with pure sample and measured by pressure in a known volume. ^c Lower molecular weight carbonyl compounds were observed but not identified.

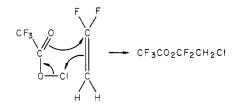
qualitatively as expected and considerably different from that of the parent olefin and hypochlorites. Their complexity, however, precludes the assignment of additional group frequencies.

The NMR spectra provide the best basis on which to assign the structures. In each case specific resonances assignable to each of the magnetically nonequivalent nuclei are observed. Unfortunately, spin-spin coupling between the acyl group and the carboalkoxy group is very small. This fact necessitated a greater dependence on chemical shift values to determine which carbon of the olefin was attached to oxygen. Two examples will be discussed here to illustrate how the assignments were made. In CF₃^ACO₂CF₂^BCF₂^CCl, the assignment of A is obvious as a slightly broadened singlet, which is coupled very weakly to B. Fluorines A and B are triplets and one multiplet is somewhat broader than the other. This could be due to coupling with A or a chlorine isotope effect. The choice of which resonance to assign to B and C is easily made, however, by comparison with compounds such as $CF_3^ASO_3CF_2^BCF_2^CBr$ and $CF_3^AOOCF_2^BCF_2^CCl^{11,12}$ In these and other compounds, J_{AB} is easily determined and the chemical shift of B is at higher field than that of C.

A similar analysis for $CF_3^ACO_2CF_2^BCH_2^CCl$ or $CF_3^ACO_2CH_2^CCF_2^BCl$ allows a choice as to the direction of addition. Assignment of A, B, and C is of course trivial, but a choice between the two structural isomers is not. Again, A is weakly coupled to another nuclei and, in all probability, it is coupled to B. However, this cannot rule out either of the possible structural isomers because one does not know what values of J_{AB} to expect, except that J_{AB} should be larger in CF₃CO₂CF₂CH₂Cl. By comparison with CF₃SO₃CF₂CH₂Cl,¹³ CF₃OCF₂CH₂Cl,¹⁴ CF₃OOCF₂C-H₂Cl,¹² and SF₅OOCF₂H₂Cl,¹⁵ the chemical shift of B is reasonable for CF₃CO₂CF₂CH₂Cl. Similarly, by comparison with a variety of compounds of the type $ClCF_2CR_1R_2R_3$ (R₁, R₂, R₃ = halogen, alkyl, perfluoroalky, and others),¹⁶ an upper limit for the chemical shift of a terminal ClCF₂-C group appears to be 71-73 ppm. In addition, the latter is considerably less than 70 ppm when

⁽¹¹⁾ Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1980, in press


⁽¹²⁾ Walker, N.; DesMarteau, D. D. J. Am. Chem. Soc. 1975, 97, 13.
(13) Katsuhara, Y.; DesMarteau, D. D. J. Org. Chem. 1980, in press.
(14) Anderson, L. R.; Young, D. E.; Gould, D. E.; Jurik-Hogan, R.;
Nuechterlein, D.; Fox, W. B. J. Org. Chem. 1970, 35, 3730.
(15) Hopkinson, M. J.; Walker, N.; DesMarteau, D. D. J. Org. Chem.


^{1976, 41, 1407.} (16) Dungan, C. H.; VanWazer, J. R. "Compilation of Reported ¹⁹F NMR Chemical Shifts"; Wiley-Interscience: New York, 1970; no. 3464-3491.

 R_1 , R_2 , and R_3 are not all electronegative groups. On this basis, we are confident that $CF_3CO_2CF_2CH_2Cl$ is the only isomer formed.

On the basis of the NMR spectra, it is clear that the addition reactions are regiospecific. Four examples with CF_3CO_2Cl and one each with the other hypochlorites give only one of two possible structural isomers in every case. Also, the addition reactions of CF_3CO_2Cl and $ClCF_2CO_2Cl$ with $CF_3CF = CF_2$ carried out by Schack and Christe gave only one structural isomer, RCO₂CF₂CFClCF₃.¹⁰ This regiospecificity is highly indicative of concerted polar addition. Because $CF_3CO_2^-$ and $R_rCO_2^-$ in general should be very weak nucleophiles, we believe the additions are electrophilic in nature. This is supported by the Markownikoff-like additions to CF_2 =CH₂ and the relative reactivity of the olefins. The direction of addition of CF_3CO_2Cl to CF_2 —CFCl and CF_2 — CCl_2 is also not that expected for a nucleophilic attack.¹⁷ On the other hand, the additions to $CF_3CF=CF_2$ cited above are as expected for a nucleophilic attack. We favor calling these reactions electrophilic additions, since it is probably the positive chlorine atom that leads to initial interaction with the olefin.

Additional information about the mechanism of these reactions was obtained by the addition of CF_3CO_2Cl to *cis*and *trans*-CFH=CFH. For each olefin, a single different diastereomer is obtained and the reaction is therefore stereospecific. We believe the cis olefin forms the erythro isomer and the trans olefin the threo isomer, which means the additions are cis (syn). This assignment of stereochemistry is based on the values of ${}^3J_{\rm HH}$, ${}^3J_{\rm HF}$, and ${}^3J_{\rm FF}$. We have presented arguments for this in related work on the additions of CF_3SO_2OX (X = Cl, Br) to alkenes,^{11,13,18} and the identical considerations apply here. If the reactions are indeed cis, a very reasonable mechanism can be written for the reactions; this is illustrated for the addition of CF_3CO_2Cl to CF_2 ==CH₂. This type of concerted ad-

dition is identical with that proposed for CF_3SO_2OX (X = Cl, Br),¹³ whose additions parallel those of CF_3CO_2Cl in every case. This appears to be the simplest and best explanation of the observed facts.

Finally, the stability of several of the esters in the presence of KF was compared. Previous work had shown that esters of the type $R_fCO_2CF(CF_3)_2$ readily decomposed in the presence of KF to $R_fC(0)F$ and $(CF_3)_2C=0.^4$ On the other hand, esters containing no α -fluorine in the

Table III. Reaction of Fluorinated Esters with KF^a

RCO ₂ C	RCO ₂ CF ₂ R' ^b		products, ^c % yield			
R	\mathbf{R}'	RC(O)F	R'C(O)F			
CF,	CF ₂ Cl	90	100			
ClCF ₂	CH,CI	100	100			
HCF,	CH,Cl	100	100			
$n-C_3\dot{F}_7$	CH, Cl	100	100			
$n - C_{3}F_{7}$	CF ₂ Cl	100	100			
		. L .				

 a ~10 g of KF for 1 h at 22 °C. b ~0.55 mmol. ^c Identified by IR and ¹⁹F NMR. Relative amounts were determined by integration of -C(O)F in the NMR spectra.

carboalkoxy group were stable.^{5,6} The variety of compounds obtained in this work provided an apportunity to further test the generality of the above. In addition, this reaction could provide an indirect confirmation of structure for an ester such as $ClCF_2CO_2CF_2CH_2Cl$. If reaction with fluoride did not proceed, it might indicate that the ester is $ClCF_2CO_2CH_2CF_2Cl$ rather than $ClCF_2CO_2CF_2CH_2Cl$. Five of the esters were investigated by transferring a known amount of the ester into a 100-mL glass bulb containing ~10 g of dried KF at -195 °C. After the mixture was warmed to 22 °C and allowed to stand for 1 h, none of the parent ester was detectable by IR. An increase in pressure by a factor of ~2 was noted. IR and ¹⁹F NMR analysis indicated the occurrence of the following reaction:

$$RCO_2CF_2R' \xrightarrow{Rr} RC(O)F + R'C(O)F$$

The results are summrized in Table III. With active fluorides such as KF, the instability of any esters containing an α -fluorine in the carboalkoxy group is probably general. However, the fluoride source is very important. Sodium fluoride is inactive in this reaction under the same conditions, and all the esters in Table I were prepared in the presence of NaF via method B. This fluoride-catalyzed decomposition of fluorinated esters made by the addition of the hypochlorites to alkenes may be a useful method for the synthesis of certain acyl fluorides where the parent acid is not readily available. A variety of 1,1-difluoroalkenes are available via Wittig reactions and from other sources.

Acknowledgment. The financial support of this work by the National Science Foundation is gratefully acknowledged.

Registry No. CF_3CO_2Cl , 65597-25-3; $C_2F_5CO_2Cl$, 71359-61-0; $n-C_3F_7CO_2Cl$, 71359-62-1; $ClCF_2CO_2Cl$, 68674-44-2; HCF_2CO_2Cl , 71359-63-2; CF_3CO_2H , 76-05-1; CF_3CO_2Na , 2923-18-4; $C_2F_5CO_2H$, 422-64-0; $C_2F_5CO_2Na$, 378-77-8; $n-C_3F_7CO_2H$, 375-22-4; $n-C_3F_7CO_2Na$, 2218-54-4; $ClCF_2CO_2H$, 76-04-0; $ClCF_2CO_2Na$, 1895-39-2; HCF_2CO_2H , 381-73-7; HCF_2CO_2Na , 2218-52-2; CF_2 —CF2, 116-14-3; CF_2 —CH2, 75-38-7; CF_2 —CFC1, 79-38-9; CF_2 —CCl2, 79-35-6; CH_2 —CH2, 74-85-1; cis-CFH—CFH, 1630-77-9; trans-CFH—CFH, 1630-78-0; $CF_3CO_2CF_2CF_2Cl$, 72844-29-2; $CF_3CO_2CF_2CF_2Cl$, 72844-30-5; $CF_3CO_2CF_2CF_2Cl$, 72844-29-2; $CF_3CO_2CF_2CF_2Cl$, 72844-30-5; $CF_3CO_2CF_2CF_2CL$, 40949-99-3; erythro-CF₃CO₂CFHCFHC1, 72844-30-5; $CF_3CO_2CF_2CF_2CL$, 40949-99-3; erythro-CF₃CO₂CFHCFHC1, 72844-30-5; $CF_3CO_2CF_2CF_2CL$, 21, 72844-33-4; $C_2F_5CO_2CF_2CF_2Cl$, 72844-33-4; $C_2F_5CO_2CF_2CF_2Cl$, 72844-33-4; $CF_3CO_2CF_2CF_2CL$, 72844-33-4; $CF_3CO_2CF_2CF_2CL$, 72844-33-4; $CICF_2CO_2CF_2CF_2CL$, 72844-37-2; $ClCF_2CO_2CF_2CH_2Cl$, 72844-38-3; $HCF_2CO_2CF_2CF_2Cl$, 72844-39-4; CF_3COF , 354-34-7; $ClCF_2COF$, 354-27-8; HCF_2COF , 2925-22-6; n-C₃F₇COF, 335-42-2; CH_2CIOF , 359-14-8.

⁽¹⁷⁾ Chambers, R. D. "Fluorine in Organic Chemistry"; Wiley-Interscience: New York, 1973, Chapter 7.
(18) Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1979, 101,

⁽¹⁸⁾ Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1979, 101, 1039.